A neon lamp (also neon glow lamp) is a miniature gas-discharge lamp. The lamp typically consists of a small glass capsule that contains a mixture of neon and Penning mixture at a low pressure and two (an anode and a cold cathode). When sufficient voltage is applied and sufficient current is supplied between the electrodes, the lamp produces an orange glow discharge. The glowing portion in the lamp is a thin region near the cathode; the larger and much longer are also glow discharges, but they use the positive column which is not present in the ordinary neon lamp. Neon glow lamps were widely used as indicator lamps in the displays of electronic instruments and appliances. They are still sometimes used for their electrical simplicity in high-voltage circuits.
Neon's scarcity precluded its prompt application for electrical lighting along the lines of , which used electric discharges in nitrogen. Moore tubes were commercialized by their inventor, Daniel McFarlan Moore, in the early 1900s. After 1902, Georges Claude's company, Air Liquide, was producing industrial quantities of neon as a byproduct of his air liquefaction business, and in December 1910 Claude demonstrated modern based on a sealed tube of neon. In 1915 a U.S. patent was issued to Claude covering the design of the electrodes for neon tube lights; this patent became the basis for the monopoly held in the U.S. by his company, Claude Neon Lights, through the early 1930s. Paid access.
Around 1917, Daniel Moore developed the neon lamp while working at the General Electric Company. The lamp has a very different design from the much larger neon tubes used for neon lighting. The difference in design was sufficient that a U.S. patent was issued for the lamp in 1919. A Smithsonian Institution website notes, "These small, low power devices use a physical principle called coronal discharge. Moore mounted two electrodes close together in a bulb and added neon or argon gas. The electrodes would glow brightly in red or blue, depending on the gas, and the lamps lasted for years. Since the electrodes could take almost any shape imaginable, a popular application has been fanciful decorative lamps.
Glow lamps found practical use as indicators in instrument panels and in many home appliances until the widespread commercialization of light-emitting diodes (LEDs) in the 1970s.
The lamp glow discharge lights at its striking voltage. The striking voltage is reduced by ambient light or radioactivity. To reduce the "dark effect", some lamps were made with a small amount of radioactive material, typically Krypton-85, added to the envelope to provide ionization in darkness.
The voltage required to sustain the discharge is significantly (up to 30%) lower than the striking voltage. This is due to the organization of positive ions near the cathode. Neon lamps operate using a low current glow discharge.
Higher power devices, such as mercury-vapor lamps or metal halide lamps use a higher current arc discharge. Low pressure sodium-vapor lamps use a neon Penning mixture for warm up and can be operated as giant neon lamps if operated in a low power mode.
For indicator-sized lamps, a resistor typically limits the current. In contrast, larger sized lamps often use a specially constructed high voltage transformer with high leakage inductance or other electrical ballast to limit the available current (see neon sign).
The potential needed to strike the discharge is higher than what is needed to sustain the discharge. When there is not enough current, the glow forms around only part of the electrode surface. Convective currents make the glowing areas flow upwards, not unlike the discharge in a Jacob's ladder. A photoionization effect can also be observed here, as the electrode area covered by the glow discharge can be increased by shining light at the lamp.
Green neon lamps"Other emitted colors such as green, yellow and blue are available through secondary emission by coating the inside surface of the envelope with phosphor." — International Light Technology can produce up to 65 lumens per watt of power input, while white neon lamps have an efficacy of around 50 lumens per watt. In contrast, a standard incandescent lamp only produces around 13.5 lumens per watt.
This allows it to be used as an active switching element. Neon lamps were used to make relaxation oscillator circuits, using this mechanism, sometimes referred to as the Pearson–Anson effect GE Glow Lamp Manual 1965 , p.14-18 for low frequency applications such as flashing warning lights, tone generators in electronic organs, and as time bases and deflection oscillators in early cathode ray oscilloscopes.
Neon lamps can also be Bistability, and were even used to build digital logic circuits such as , flip-flop, binary memory, and . GE Glow Lamp Manual 1965 , p.35-36, 41-66 These applications were sufficiently common that manufacturers made neon lamps specifically for this use, sometimes called "circuit-component" lamps. At least some of these lamps have a glow concentrated into a small spot on the cathode, which made them unsuited to use as indicators. To provide more repeatable lamp characteristics and reduce "dark effect" ( a rise in starting voltage observed in lamps kept in total darkness), some types of lamp such as NE83 (5AH) include a small amount of a radioisotope to provide initial ionization.
A variant of the NE-2 type lamp for circuit applications, the NE-77, have three wire electrodes in the lamp (in a plane) instead of the usual two, the third for use as a control electrode.
In these applications the lamps are operated either in "starvation" mode (to reduce lamp-current noise) or in normal glow discharge mode; some literature references their use as detectors of radiation up into the optical regime when operated in abnormal glow mode. Coupling of microwaves into the plasma may be in free space, in waveguide, by means of a parabolic concentrator (e.g., Winston cone), or via capacitive means via a loop or dipole antenna mounted directly to the lamp.
Although most of these applications use ordinary off-the-shelf dual-electrode lamps, in one case it was found that special three (or more) electrode lamps, with the extra electrode acting as the coupling antenna, provided even better results (lower noise and higher sensitivity). This discovery received a US patent.
Since at least the 1940s, argon, neon, and glow thyratron latching indicators (which would light up upon an impulse on their starter electrode and extinguish only after their anode voltage was cut) were available for example as self-displaying shift registers in large-format, crawling-text dot-matrix displays, or, combined in a 4×4, four-color phosphored-thyratron matrix, as a stackable 625-color RGBA pixel for large video graphics arrays.
Multiple-cathode and/or anode glow thyratrons called could count forwards and backwards while their count state was visible as a glow on one of the numbered cathodes. These were used as self-displaying divide-by-n counter/timer/prescalers in counting instruments, or as adder/subtracters in calculators.
Because of their comparatively short response time, in the early development of television neon lamps were used as the light source in many mechanical-scan TV displays.
Novelty glow lamps with shaped electrodes (such as flowers and leaves), often coated with phosphors, have been made for artistic purposes. In some of these, the glow that surrounds an electrode is part of the design.
They can also be filled with argon, krypton, or xenon rather than neon, or mixed with it. While the electrical operating characteristics remain similar, these lamps light with a bluish glow (including some ultraviolet) rather than neon's characteristic reddish-orange glow. Ultraviolet radiation then can be used to excite a phosphor coating inside of the bulb and provide a wide range of various colors, including white. A mixture of 95% neon, 2.5% krypton, and 2.5% argon can be used for a green glow, but nevertheless "green neon" lamps are more commonly phosphor-based.
Description
A: random pulses by cosmic radiation
B: saturation current
C: Avalanche breakdown Townsend discharge
D: self-sustained Townsend discharge
E: unstable region: corona discharge
F: sub-normal glow discharge
G: normal glow discharge
H: abnormal glow discharge
I: unstable region: glow-arc transition
J: electric arc
K: electric arc
A-D region: dark discharge; ionisation occurs, current below 10 microamps.
F-H region: glow discharge; the plasma emits a faint glow.
I-K region: arc discharge; large amounts of electromagnetic radiation produced.]]
A small electric current (for a 5 mm bulb diameter NE-2 lamp, the quiescent current is about 400 μA), which may be AC or direct current, is allowed through the tube, causing it to glow orange-red. The gas is typically a Penning mixture, 99.5% neon and 0.5% argon, which has lower striking voltage than pure neon, at a pressure of .
Limiting current
Flicker flame
Efficiency
Environmental effects
Applications
Visual indicator
Voltage surge suppression
Voltage tester
Voltage regulation
Switching element/oscillator
Detector
Alphanumerical display
Other
Color
See also
Further reading
target="_blank" rel="nofollow"> (archive)
External links
|
|